Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The apparently contradictory energetics of hopping and running: the counter-intuitive effect of constraints resolves the paradox.

Metabolic rate appears to increase with the rate of force application for running. Leg function during ground contact is similar in hopping and running, so one might expect that this relationship would hold for hopping as well. Surprisingly, metabolic rate appeared to decrease with increasing force rate for hopping. However, this paradox is the result of comparing different cross-sections of the metabolic cost landscapes for hopping and running. The apparent relationship between metabolic rate and force rate observed in treadmill running is likely not a fundamental characteristic of muscle physiology, but a result of runners responding to speed constraints, i.e. runners selecting step frequencies that minimize metabolic cost per distance for a series of treadmill-specified speeds. Evaluating hopping metabolic rate over a narrow range of hop frequencies similar to that selected by treadmill runners yields energy use trends similar to those of running.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app