Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

EMG-Driven Optimal Estimation of Subject-SPECIFIC Hill Model Muscle-Tendon Parameters of the Knee Joint Actuators.

OBJECTIVE: the purpose of this paper is to propose an optimal control problem formulation to estimate subject-specific Hill model muscle-tendon (MT-) parameters of the knee joint actuators by optimizing the fit between experimental and model-based knee moments. Additionally, this paper aims at determining which sets of functional motions contain the necessary information to identify the MT-parameters.

METHODS: the optimal control and parameter estimation problem underlying the MT-parameter estimation is solved for subject-specific MT-parameters via direct collocation using an electromyography-driven musculoskeletal model. The sets of motions containing sufficient information to identify the MT-parameters are determined by evaluating knee moments simulated based on subject-specific MT-parameters against experimental moments.

RESULTS: the MT-parameter estimation problem was solved in about 30 CPU minutes. MT-parameters could be identified from only seven of the 62 investigated sets of motions, underlining the importance of the experimental protocol. Using subject-specific MT-parameters instead of more common linearly scaled MT-parameters improved the fit between inverse dynamics moments and simulated moments by about 30% in terms of the coefficient of determination (from [Formula: see text] to [Formula: see text]) and by about 26% in terms of the root mean square error (from [Formula: see text] to [Formula: see text] ). In particular, subject-specific MT-parameters of the knee flexors were very different from linearly scaled MT-parameters.

CONCLUSION: we introduced a computationally efficient optimal control problem formulation and provided guidelines for designing an experimental protocol to estimate subject-specific MT-parameters improving the accuracy of motion simulations.

SIGNIFICANCE: the proposed formulation opens new perspectives for subject-specific musculoskeletal modeling, which might be beneficial for simulating and understanding pathological motions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app