Add like
Add dislike
Add to saved papers

In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina.

The bacterial CRISPR/Cas system has proven to be an efficient tool for genetic manipulation in various organisms. Here we show the application of CRISPR-Cas9 technology to edit the human Rhodopsin (RHO) gene in a mouse model for autosomal dominant Retinitis Pigmentosa. We designed single or double sgRNAs to knock-down mutant RHO expression by targeting exon 1 of the RHO gene carrying the P23H dominant mutation. By delivering Cas9 and sgRNAs in a single plasmid we induced an efficient gene editing in vitro, in HeLa cells engineered to constitutively express the P23H mutant RHO allele. Similarly, after subretinal electroporation of the CRISPR/Cas9 plasmid expressing two sgRNAs into P23H RHO transgenic mice, we scored specific gene editing as well as significant reduction of the mutant RHO protein. Successful in vivo application of the CRISPR/Cas9 system confirms its efficacy as a genetic engineering tool in photoreceptor cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app