Add like
Add dislike
Add to saved papers

Interaction between Radioadaptive Response and Radiation-Induced Bystander Effect in Caenorhabditis elegans : A Unique Role of the DNA Damage Checkpoint.

Radiation Research 2016 December
Although radioadaptive responses (RAR) and radiation-induced bystander effects (RIBE) are two important biological effects of low-dose radiation, there are currently only limited data that directly address their interaction, particularly in the context of whole organisms. In previous studies, we separately demonstrated RAR and RIBE using an in vivo system of C. elegans . In the current study, we further investigated their interaction in C. elegans , with the ratio of protruding vulva as the biological end point for RAR. Fourteen-hour-old worms were first locally targeted with a proton microbeam, and were then challenged with a high dose of whole-body gamma radiation. Microbeam irradiation of the posterior pharynx bulbs and rectal valves of C. elegans could significantly suppress the induction of protruding vulva by subsequent gamma irradiation, suggesting a contribution of RIBE to RAR in the context of the whole organism. Moreover, C. elegans has a unique DNA damage response in which the upstream DNA damage checkpoint is not active in most of somatic cells, including vulval cells. However, its impairment in atm-1 and hus-1 mutants blocked the RIBE-initiated RAR of vulva. Similarly, mutations in the atm-1 and hus-1 genes inhibited the RAR of vulva initiated by microbeam irradiation of the vulva itself. These results further confirm that the DNA damage checkpoint participates in the induction of RAR of vulva in C. elegans in a cell nonautonomous manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app