CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Mechanism of low-level microwave radiation effect on nervous system.

The aim of this study is to explain the mechanism of the effect of low-level modulated microwave radiation on brain bioelectrical oscillations. The proposed model of excitation by low-level microwave radiation bases on the influence of water polarization on hydrogen bonding forces between water molecules, caused by this the enhancement of diffusion and consequences on neurotransmitters transit time and neuron resting potential. Modulated microwave radiation causes periodic alteration of the neurophysiologic parameters and parametric excitation of brain bioelectric oscillations. The experiments to detect logical outcome of the mechanism on physiological level were carried out on 15 human volunteers. The 450-MHz microwave radiation modulated at 7, 40 and 1000 Hz frequencies was applied at the field power density of 0.16 mW/cm(2). A relative change in the EEG power with and without radiation during 10 cycles was used as a quantitative measure. Experimental data demonstrated that modulated at 40 Hz microwave radiation enhanced EEG power in EEG alpha and beta frequency bands. No significant alterations were detected at 7 and 1000 Hz modulation frequencies. These results are in good agreement with the theory of parametric excitation of the brain bioelectric oscillations caused by the periodic alteration of neurophysiologic parameters and support the proposed mechanism. The proposed theoretical framework has been shown to predict the results of experimental study. The suggested mechanism, free of the restrictions related to field strength or time constant, is the first one providing explanation of low-level microwave radiation effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app