Add like
Add dislike
Add to saved papers

Diagnostic model generated by MRI-derived brain features in toddlers with autism spectrum disorder.

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder mainly showed atypical social interaction, communication, and restricted, repetitive patterns of behavior, interests and activities. Now clinic diagnosis of ASD is mostly based on psychological evaluation, clinical observation and medical history. All these behavioral indexes could not avoid defects such as subjectivity and reporter-dependency. Therefore researchers devoted themselves to seek relatively stable biomarkers of ASD as supplementary diagnostic evidence. The goal of present study is to generate relatively stable predictive model based on anatomical brain features by using machine learning technique. Forty-six ASD children and thirty-nine development delay children aged from 18 to 37 months were evolved in. As a result, the predictive model generated by regional average cortical thickness of regions with top 20 highest importance of random forest classifier showed best diagnostic performance. And random forest was proved to be the optimal approach for neuroimaging data mining in small size set and thickness-based classification outperformed volume-based classification and surface area-based classification in ASD. The brain regions selected by the models might attract attention and the idea of considering biomarkers as a supplementary evidence of ASD diagnosis worth exploring. Autism Res 2017, 0: 000-000. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 620-630. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app