Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Combined delivery of FGF-2, TGF-β1, and adipose-derived stem cells from an engineered periosteum to a critical-sized mouse femur defect.

Critical-sized long bone defects suffer from complications including impaired healing and non-union due to substandard healing and integration of devitalized bone allograft. Removal of the periosteum contributes to the limited healing of bone allografts. Restoring a periosteum on bone allografts may provide improved allograft healing and integration. This article reports a polysaccharide-based tissue engineered periosteum that delivers basic fibroblast growth factor (FGF-2), transforming growth factor-β1 (TGF-β1), and adipose-derived mesenchymal stem cells (ASCs) to a critical-sized mouse femur defect. The tissue engineered periosteum was evaluated for improving bone allograft healing and incorporation by locally delivering FGF-2, TGF-β1, and supporting ASCs transplantation. ASCs were successfully delivered and longitudinally tracked at the defect site for at least 7 days post operation with delivered FGF-2 and TGF-β1 showing a mitogenic effect on the ASCs. At 6 weeks post implantation, data showed a non-significant increase in normalized bone callus volume. However, union ratio analysis showed a significant inhibition in allograft incorporation, confirmed by histological analysis, due to loosening of the nanofiber coating from the allograft surface. Ultimately, this investigation shows our tissue engineered periosteum can deliver FGF-2, TGF-β1, and ASCs to a mouse critical-sized femur defect and further optimization may yield improved bone allograft healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 900-911, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app