COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Passive Drip Stain Formation Dynamics of Blood onto Hard Surfaces and Comparison with Simple Fluids for Blood Substitute Development and Assessment<sup/>.

The spreading dynamics of blood dripping onto hard surfaces is compared to two spreading models. Samples of human blood, porcine blood, and Millipore(®) water were dripped onto cardboard, foamcore, and glass surfaces in low velocity passive drip simulations. Final stain diameter, the total number of spines and scallops, and angle of impact were measured and analyzed. Spreading is best predicted by applying the concept of effective viscosity to the Scheller and Bousfield (R(2)  = 0.91) and Roisman (R(2)  = 0.89) spreading models. In the tested conditions, blood spreads with Newtonian tendencies; however, has quantifiable differences in stain appearance to Newtonian fluids like water. This is encouraging for the development of water-based fluids as synthetic blood substitutes (SBSs). The work presents an assessment platform to quantify and score the performance of simple water-based fluids using final stain diameter (6 points) and number of spines and scallops (6 points) at six dripping heights between 20 and 120 cm. The angle of impact of a stain alone is not a sensitive measure of SBS performance, but stain formation scores the SBS's performance with another 1 point. Together these features generate a quantitative relative ranking system, of a maximum possible 13 points, that can be used to support the use of a particular fluid for the creation of a drip stain. The performance of twenty simple fluids in the simulated dripping assessment test is described.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app