Add like
Add dislike
Add to saved papers

On the Methodological Implications of Extracting Muscle Synergies from Human Locomotion.

We investigated the influence of three different high-pass (HP) and low-pass (LP) filtering conditions and a Gaussian (GNMF) and inverse-Gaussian (IGNMF) non-negative matrix factorization algorithm on the extraction of muscle synergies from myoelectric signals during human walking and running. To evaluate the effects of signal recording and processing on the outcomes, we analyzed the intraday and interday computation reliability. Results show that the IGNMF achieved a significantly higher reconstruction quality and on average needs one less synergy to sufficiently reconstruct the original signals compared to the GNMF. For both factorizations, the HP with a cut-off frequency of 250[Formula: see text]Hz significantly reduces the number of synergies. We identified the filter configuration of fourth order, HP 50[Formula: see text]Hz and LP 20[Formula: see text]Hz as the most suitable to minimize the combination of fundamental synergies, providing a higher reliability across all filtering conditions even if HP 250[Formula: see text]Hz is excluded. Defining a fundamental synergy as a single-peaked activation pattern, for walking and running we identified five and six fundamental synergies, respectively using both algorithms. The variability in combined synergies produced by different filtering conditions and factorization methods on the same data set suggests caution when attributing a neurophysiological nature to the combined synergies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app