Add like
Add dislike
Add to saved papers

Modelling the effect of hydration on skin conductivity.

BACKGROUND: Electrical signals are recorded from and sent into the body via the skin in a number of applications. In practice, skin is often hydrated with liquids having different conductivities so a model was produced in order to determine the relationship between skin impedance and conductivity.

METHODS: A model representing the skin was subjected to a variety of electrical signals. The parts of the model representing the stratum corneum were given different conductivities to represent different levels of hydration.

RESULTS: The overall impedance and conductivity of the cells did not vary at frequencies below 40 kHz. Above 40 kHz, levels of increased conductivity caused the overall impedance to decrease.

CONCLUSION: The variation in impedance with conductivity between 5 and 50 mSm-1 can be modelled quadratically while variation in impedance with conductivity between 5 and 5000 mSm-1 can be modelled with a double exponential decay.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app