JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cell-Based Fluorescent Screen to Identify Inhibitors of Bacterial Translation Initiation.

A strategy that can be applied to the research of new molecules with antibacterial activity is to look for inhibitors of essential bacterial processes within large collections of chemically heterogeneous compounds. The implementation of this approach requires the development of proper assays aimed at the identification of molecules interfering with specific cell pathways and potentially applicable to the high throughput analysis of large chemical library. Here, I describe a fluorescence-based whole-cell assay in Escherichia coli devised to find inhibitors of the translation initiation pathway. Translation is a complex and essential mechanism. It involves numerous sub-steps performed by factors that are in many cases sufficiently dissimilar in bacterial and eukaryotic cells to be targetable with domain-specific drugs. As a matter of fact, translation has been proven as one of the few bacterial mechanisms pharmacologically tractable with specific antibiotics. The assay described in this chapter is tailored to the identification of molecules affecting the first stage of translation initiation, which is the most dissimilar step in bacteria vs. mammals. The effect of the compounds under analysis is assayed in living cells, thus allowing evaluating their in vivo performance as inhibitors of translation initiation. Compared with other assays for antibacterials, the major advantages of this screen are its simplicity and high mechanism specificity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app