Add like
Add dislike
Add to saved papers

Effects of acetaminophen on mitochondrial complex I activity in the rat liver and kidney: a PET study with (18)F-BCPP-BF.

EJNMMI Research 2016 December
BACKGROUND: In the present study, 2-tert-butyl-4-chloro-5-[6-(4-(18)F-fluorobutoxy)-pyridin-3-ylmethoxy]-2H-pyridazin-3-one ((18)F-BCPP-BF), a PET probe for mitochondrial complex I (MC-I), was used to validate whether MC-I is a useful biomarker for detecting acetaminophen-induced dysfunctions in the liver and kidney. The kinetic and distribution of (18)F-BCPP-BF were assessed in rats using high-resolution animal PET in vivo. The binding specificity of (18)F-BCPP-BF to MC-I in the liver and kidney was confirmed by the pre-administration of rotenone, a specific MC-I inhibitor. The effects of acetaminophen on MC-I activity were assessed 2 and 24 h after the administration of vehicle or acetaminophen at a dose of 100 or 300 mg/kg. Biochemical parameters in plasma and urine were assessed 2, 6, and 24 h after the administration of vehicle or acetaminophen.

RESULTS: The uptake of (18)F-BCPP-BF by the liver and kidney was significantly inhibited by the pre-administration of rotenone. Two and more hours after the administration of acetaminophen, the uptake of (18)F-BCPP-BF was dose-dependently reduced in the liver, even at 100 mg/kg, and in the kidney at 300 mg/kg, whereas biological parameters started to be affected 6 h or later at doses of 300 mg/kg.

CONCLUSIONS: The present study demonstrated that (18)F-BCPP-BF has potential as a PET probe for the quantitative imaging of hepatic and renal dysfunction as impaired MC-I activity in the early phase of the treatment for an overdose of acetaminophen in the living body with PET.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app