Add like
Add dislike
Add to saved papers

Community structure of a sulfate-reducing consortium in lead-contaminated wastewater treatment process.

This study evaluated the capacity to remove lead by an indigenous consortium of five sulfate-reducing bacteria (SRB): Desulfobacterium autotrophicum, Desulfomicrobium salsugmis, Desulfomicrobium escambiense, Desulfovibrio vulgaris, and Desulfovibrio carbinolicus, using continuous moving bed biofilm reactor systems. Four continuous moving bed biofilm reactors (referred as R1-R4) were run in parallel for 40 days at lead loading rates of 0, 20, 30 and 40 mg l(-1) day(-1), respectively. The impact of lead on community structure of the SRB consortium was investigated by dsrB gene-based denaturing gradient gel electrophoresis (dsrB-based DGGE), fluorescence in situ hybridization (FISH) and chemical analysis. These results indicated that D. escambiense and D. carbinolicus were dominant in all analyzed samples and played a key role in lead removal in R2 (20 mg l(-1) day(-1)) and R3 (30 mg l(-1) day(-)(1)). However, in R4 (40 mg l(-1) day(-1)), these two strains were barely detected by FISH and dsrB-based DGGE. As a result, SRB activity was severely affected by lead toxicity. High lead removal efficiencies of lead (99-100%) were observed in R2 and R3 throughout the operation, whereas that in R4 was significantly decreased (91%) after 40 days of operation. This data strongly implied that the investigated SRB consortium might have potential application for lead removal. Moreover, to improve the efficiency of the lead treatment process, the lead loading rates below the inhibitory level to SRB activity should be selected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app