Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Next generation predictive biomarkers for immune checkpoint inhibition.

With the advent of targeted therapies, there has been a revolution in the treatment of cancer across multiple histologies. Immune checkpoint blockade has made it possible to take advantage of receptor-ligand interactions between immune and tumor cells in a wide spectrum of malignancies. Toxicity in healthy tissue, however, can limit our use of these agents. Immune checkpoint blockade has been approved in advanced melanoma, renal cell cancer, non-small cell lung cancer, relapsed refractory Hodgkin's lymphoma, and urothelial cancer. Though FDA-approved indications for use of some of these novel agents depend on current protein-based programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) assays, detection methods come with several caveats. Additional predictive tools must be interrogated to discern responders from non-responders. Some of these include measurement of microsatellite instability, PD-L1 amplification, cluster of differentiation 8 (CD8) infiltrate density, and tumor mutational burden. This review serves to synthesize biomarker detection at the DNA, RNA, and protein level to more accurately forecast benefit from these novel agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app