Add like
Add dislike
Add to saved papers

New dinuclear ruthenium arene complexes containing thiosemicarbazone ligands: synthesis, structure and cytotoxic studies.

A series of mononuclear ruthenium arene complexes with thiosemicarbazone (TSC) ligands (A-type, 1-8) and their corresponding di-nuclear analogues (B-type, 9-16) were synthesized and characterized by NMR, elemental analysis and HR-ESI-mass spectrometry. The molecular structures of 1, 2, 6, 9-11 and 13-16 were determined using single-crystal X-ray diffraction analysis. The Gibbs free energy of the two examples of the two types of complexes (1 and 9) and the bonding order in their single-crystals were studied using density functional theory (DFT) calculations. The compounds were further evaluated for their in vitro antiproliferative activities against CNE-2 human nasopharyngeal carcinoma, KB human oral epithelial carcinoma, SGC-7901 human gastric carcinoma, HepG2 human liver carcinoma, HeLa human cervical carcinoma and HEK-293T noncancerous cell lines. Furthermore, the interactions between the compounds and DNA were studied by electrophoretic mobility spectrometry studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app