Add like
Add dislike
Add to saved papers

A comparison of the innate flexibilities of six chains in F1-ATPase with identical secondary and tertiary folds; 3 active enzymes and 3 structural proteins.

The α and β subunits comprising the hexameric assembly of F1-ATPase share a high degree of structural identity, though low primary identity. Each subunit binds nucleotide in similar pockets, yet only β subunits are catalytically active. Why? We re-examine their internal symmetry axes and observe interesting differences. Dividing each chain into an N-terminal head region, a C-terminal foot region, and a central torso, we observe (1) that while the foot and head regions in all chains obtain high and similar mobility, the torsos obtain different mobility profiles, with the β subunits exhibiting a higher motility compared to the α subunits, a trend supported by the crystallographic B-factors. The β subunits have greater torso mobility by having fewer distributed, nonlocal packing interactions providing a spacious and soft connectivity and offsetting the resultant softness with local stiffness elements, including an additional β sheet. (2) A loop near the nucleotide binding-domain of the β subunits, absent in the α subunits, swings to create a large variation in the occlusion of the nucleotide binding region. (3) A combination of the softest three eigenmodes significantly reduces the root mean square difference between the open and closed conformations of the β subunits. (4) Comparisons of computed and observed crystallographic B-factors suggest a suppression of a particular symmetry axis in an α subunit. (5) Unexpectedly, the soft intra-monomer oscillations pertain to distortions that do not create inter-monomer steric clashes in the assembly, suggesting that structural optimization of the assembly evolved at all levels of complexity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app