Add like
Add dislike
Add to saved papers

In vitro reconstitution of breast cancer heterogeneity with multipotent cancer stem cells using small molecules.

A small fraction of tumor cells are thought to possess the potential for both multiple-lineage differentiation and self-renewal, which underlies the cancer stem cell hypothesis. However, the differentiation mechanisms of these cells have not been elucidated due to a lack of appropriate culture methods. Here, we established a culture condition for maintaining multipotent tumor cells from rat breast tumors using 4 small molecules. Cultured tumor cells in this condition retained their intrinsic myoepithelial features, expressing p63 and CK14 and vimentin. In a xenograft model, the p63-expressing cells formed epithelial tumors containing glandular, squamous and sebaceous compartments. Upon withdrawal of the small molecules, p63 and CK14 expression was lost, with concurrent increase in expression of mesenchymal markers. These transited cells acquired drug resistance and invasiveness and showed massive sarcomatoid tumorigenicity. Epithelial features could not be recovered by re-exposure to the small molecules in the transited cells. Here, we have identified multipotent cancer cells within primary mammary tumors and demonstrated that their plasticity is maintained by the small molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app