Add like
Add dislike
Add to saved papers

Effect of C-terminal domain truncation of Thermus thermophilus trehalose synthase on its substrate specificity.

The C-terminal domain of the three-domain-comprising trehalose synthase from Thermus thermophilus was truncated in order to study the effect on the enzyme's activity and substrate specificity. Compared with the wild-type (WT) enzyme, the two truncated enzymes (DM1 and DM2) showed lower maltose- and trehalose-converting activities and a different transglycosylation reaction mechanism. In the mutants, the glucose moiety cleaved from the maltose substrate was released from the enzyme and intercepted by external glucose oxidase, preventing the production of trehalose. The WT enzyme, however, retained the glucose in the active site to effectively produce trehalose. In addition, DM1 synthesized much higher amounts of mannose-containing disaccharide trehalose analog (Man-TA) than did the WT and DM2. The results suggest that the C-terminal domain in the WT enzyme is important for retaining the glucose moiety within the active site. The mutant enzymes could be used to produce Man-TA, a postulated inhibitor of gut disaccharidases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app