JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification of two mutations that cause defects in the ligninolytic system through an efficient forward genetics in the white-rot agaricomycete Pleurotus ostreatus.

White-rot fungi play an important role in the global carbon cycle because they are the species that almost exclusively biodegrade wood lignin in nature. Lignin peroxidases (LiPs), manganese peroxidases (MnPs) and versatile peroxidases (VPs) are considered key players in the ligninolytic system. Apart from LiPs, MnPs and VPs, however, only few other factors involved in the ligninolytic system have been investigated using molecular genetics, implying the existence of unidentified elements. By combining classical genetic techniques with next-generation sequencing technology, they successfully showed an efficient forward genetics approach to identify mutations causing defects in the ligninolytic system of the white-rot fungus Pleurotus ostreatus. In this study, they identified two genes - chd1 and wtr1 - mutations in which cause an almost complete loss of Mn2+ -dependent peroxidase activity. The chd1 gene encodes a putative chromatin modifier, and wtr1 encodes an agaricomycete-specific protein with a putative DNA-binding domain. The chd1-1 mutation and targeted disruption of wtr1 hamper the ability of P. ostreatus to biodegrade wood lignin. Examination of the effects of the aforementioned mutation and disruption on the expression of certain MnP/VP genes suggests that a complex mechanism underlies the ligninolytic system in P. ostreatus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app