Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation.

ChemSusChem 2017 January 21
The slow kinetics of water oxidation greatly jeopardizes the efficiency of water electrolysis for H2 production. Developing highly active water oxidation electrodes with affordable fabrication costs is thus of great importance. Herein, a NiII FeIII surface species on Ni metal substrate was generated by electrochemical modification of Ni in a ferrous solution by a fast, simple, and cost-effective procedure. In the prepared NiII FeIII catalyst film, FeIII was incorporated uniformly through controlled oxidation of FeII cations on the electrode surface. The catalytically active NiII originated from the Ni foam substrate, which ensured the close contact between the catalyst and the support toward improved charge-transfer efficiency. The as-prepared electrode exhibited high activity and long-term stability for electrocatalytic water oxidation. The overpotentials required to reach water oxidation current densities of 50, 100, and 500 mA cm-2 are 276, 290, and 329 mV, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app