Add like
Add dislike
Add to saved papers

Lipidomics analysis of long-chain fatty acyl-coenzyme As in liver, brain, muscle and adipose tissue by liquid chromatography/tandem mass spectrometry.

RATIONALE: Long-chain fatty acyl-coenzyme As (FA-CoAs) are important bioactive molecules, playing key roles in biosynthesis of fatty acids, membrane trafficking and signal transduction. Development of sensitive analytical methods for profiling theses lipid species in various tissues is critical to understand their biological activity. A high-pressure liquid chromatography/tandem mass spectrometry method has been developed for the quantitative analysis and screening of long-chain FACoAs in liver, brain, muscle and adipose tissue.

METHODS: The sample preparation method consists of tissue homogenization, extraction with organic solvent and reconstitution in an ammonium hydroxide buffer. Extracts are separated by liquid chromatography (LC) on a reversed-phase column and detected by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in positive mode. An additional neutral loss scan allows for untargeted FA-CoAs screening.

RESULTS: Extraction was optimized for low sample load (10 mg) of four tissue types (liver, brain, muscle and adipose tissue) with recoveries between 60-140% depending on the analyte and tissue type. Targeted quantification was validated for ten FA-CoAs in the range 0.1-500 ng/mL with accuracies between 85-120%.

CONCLUSIONS: We have developed and validated a LC/MS/MS method for the quantifications and screening of long-chain FA-CoAs in four different types of mammalian tissue. The extraction method is straightforward and long-chain FA-CoA species can be quantified using only minimum amount of tissue. Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app