Add like
Add dislike
Add to saved papers

The impact of endoscopic sinus surgery on paranasal physiology in simulated sinus cavities.

BACKGROUND: Surgery improves symptoms for the majority of chronic rhinosinusitis (CRS) patients; however, physiological changes in the sinus cavities remain poorly characterized. Direct measurement of changes in airflow, pressure, temperature, humidity, and intranasal spray distribution following surgery is technically challenging. Accordingly, we have used computational fluid dynamic modeling to quantify how these parameters change postoperatively.

METHODS: Computed tomography images from a normal control, a patient with CRS preoperatively and postoperatively, and a patient following an endoscopic Lothrop procedure (ELP) were used to create 4 three-dimensional models of the sinus cavities. Changes in physiologic parameters and topical drug distribution were modeled (inhaled air at 16°C and 10% humidity) at the maxillary ostium, frontal recess, and sphenoid ostium.

RESULTS: Large differences were seen between models. Following surgery, the maxillary ostia were found on average to be cooler (by 2.4°C), with an increased airflow (0.26 m/second; from 0 m/second), and a 9% reduction in absolute humidity. Sphenoid ostial parameters followed a similar trend. Significant changes in frontal recess physiology were seen following ELP in which the recess was 4.2°C cooler, had increased airflow (0.76 m/second) and a 17% reduction in absolute humidity. Topical drug distribution increased with surgery, particularly after ELP.

CONCLUSION: Surgery changes the geometry and physiology of the paranasal sinuses. These changes are likely to have an impact on wound healing, mucociliary function, and microbial ecology in postoperative cavities. Application of this model to further understand the effects of surgery may help to optimize surgical techniques and improve topical drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app