JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Roles of Notch Signaling in Adipocyte Progenitor Cells and Mature Adipocytes.

Adipose tissues, composed with mature adipocytes and preadipocytic stromal/stem cells, play crucial roles in whole body energy metabolism and regenerative medicine. Mature adipocytes are derived and differentiated from mesenchymal stem cells (MSCs) or preadipocytes. This differentiation process, also called adipogenesis, is regulated by several signaling pathways and transcription factors. Notch1 signaling is a highly conserved pathway that is indispensable for stem cell hemostasis and tissue development. In adipocyte progenitor cells, Notch1 signaling regulates the adipogenesis process including proliferation and differentiation of the adipocyte progenitor cells in vitro. Notably, the roles of Notch1 signaling in beige adipocytes formation, adipose development, and function, and the whole body energy metabolism have been recently reported. Here, we mainly review and discuss the roles of Notch1 signaling in adipogenesis in vitro as well as in beige adipocytes formation, adipocytes dedifferentiation, and function in vivo. J. Cell. Physiol. 232: 1258-1261, 2017. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app