Add like
Add dislike
Add to saved papers

Radiation-induced transformations of methanol molecules in low-temperature solids: a matrix isolation study.

The effect of X-ray irradiation on methanol molecules (CH3 OH, CD3 OH, and13 CH3 OH) isolated in solid noble gas matrices (Ne, Ar, Kr, and Xe) was studied by FTIR spectroscopy at 6 K. CH2 OH˙, H2 CO, HCO˙ and CO were found to be the main degradation products. Somewhat unexpectedly, the production of CO is quite prominent, even at low doses, and it strongly predominates in low-polarizable matrices (especially, in neon). This result is explained by inefficient quenching of excess energy in the H2 CO molecules initially generated from methanol. Relatively small amounts of CH4 , CH3 ˙ and CO2 were also observed directly after irradiation. The latter species presumably originates from methanol dimers or methanol-water complexes. The mechanisms of radiolysis and annealing-induced reactions are discussed and possible implications for the astrochemically relevant ices are considered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app