JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

The Elongator complex-associated protein DRL1 plays a positive role in immune responses against necrotrophic fungal pathogens in Arabidopsis.

DEFORMED ROOT AND LEAVES1 (DRL1) is an Arabidopsis homologue of the yeast TOXIN TARGET4 (TOT4)/KILLER TOXIN-INSENSITIVE12 (KTI12) protein that is physically associated with the RNA polymerase II-interacting protein complex named Elongator. Mutations in DRL1 and Elongator lead to similar morphological and molecular phenotypes, suggesting that DRL1 and Elongator may functionally overlap in Arabidopsis. We have shown previously that Elongator plays an important role in both salicylic acid (SA)- and jasmonic acid (JA)/ethylene (ET)-mediated defence responses. Here, we tested whether DRL1 also plays a similar role as Elongator in plant immune responses. Our results show that, although DRL1 partially contributes to SA-induced cytotoxicity, it does not play a significant role in SA-mediated expression of PATHOGENESIS-RELATED genes and resistance to the virulent bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. In contrast, DRL1 is required for JA/ET- and necrotrophic fungal pathogen Botrytis cinerea-induced defence gene expression and for resistance to B. cinerea and Alternaria brassicicola. Furthermore, unlike the TOT4/KTI12 gene which, when overexpressed in yeast, confers zymocin resistance, a phenotype of the tot4/kti12 mutant, overexpression of DRL1 does not change B. cinerea-induced defence gene expression and resistance to this pathogen. Finally, DRL1 contains an N-terminal P-loop and a C-terminal calmodulin (CaM)-binding domain and is a CaM-binding protein. We demonstrate that both the P-loop and the CaM-binding domain are essential for the function of DRL1 in B. cinerea-induced expression of PDF1.2 and ORA59, and in resistance to B. cinerea, suggesting that the function of DRL1 in plant immunity may be regulated by ATP/GTP and CaM binding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app