Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Infection assays in Arabidopsis reveal candidate effectors from the poplar rust fungus that promote susceptibility to bacteria and oomycete pathogens.

Fungi of the Pucciniales order cause rust diseases which, altogether, affect thousands of plant species worldwide and pose a major threat to several crops. How rust effectors-virulence proteins delivered into infected tissues to modulate host functions-contribute to pathogen virulence remains poorly understood. Melampsora larici-populina is a devastating and widespread rust pathogen of poplar, and its genome encodes 1184 identified small secreted proteins that could potentially act as effectors. Here, following specific criteria, we selected 16 candidate effector proteins and characterized their virulence activities and subcellular localizations in the leaf cells of Arabidopsis thaliana. Infection assays using bacterial (Pseudomonas syringae) and oomycete (Hyaloperonospora arabidopsidis) pathogens revealed subsets of candidate effectors that enhanced or decreased pathogen leaf colonization. Confocal imaging of green fluorescent protein-tagged candidate effectors constitutively expressed in stable transgenic plants revealed that some protein fusions specifically accumulate in nuclei, chloroplasts, plasmodesmata and punctate cytosolic structures. Altogether, our analysis suggests that rust fungal candidate effectors target distinct cellular components in host cells to promote parasitic growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app