Add like
Add dislike
Add to saved papers

A Small Chimeric Fibronectin Fragment Accelerates Dermal Wound Repair in Diabetic Mice.

Advances in Wound Care 2016 November 2
Objective: During wound repair, soluble fibronectin is converted into biologically active, insoluble fibrils via a cell-mediated process. This fibrillar, extracellular matrix (ECM) form of fibronectin stimulates cell processes critical to tissue repair. Nonhealing wounds show reduced levels of ECM fibronectin fibrils. The objective of this study was to produce a small, recombinant wound supplement with the biological activity of insoluble fibronectin fibrils. Approach: A chimeric fibronectin fragment was produced by inserting the integrin-binding Arg-Gly-Asp (RGD) loop from the tenth type III repeat of fibronectin (FNIII10) into the analogous site within the heparin-binding, bioactive fragment of the first type III repeat (FNIII1H). FNIII1H(RGD) was tested for its ability to support cell functions necessary for wound healing, and then evaluated for its capacity to accelerate healing of full-thickness dermal wounds in diabetic mice. Results:In vitro, FNIII1H(RGD) supported cell adhesion, proliferation, and ECM fibronectin deposition. Application of FNIII1H(RGD) to dermal wounds of diabetic mice significantly enhanced wound closure compared with controls (73.9% ±4.1% vs. 58.1% ±4.7% closure on day 9, respectively), and significantly increased granulation tissue thickness (2.88 ± 0.75-fold increase over controls on day 14). Innovation: Recombinant proteins designed to functionally mimic the ECM form of fibronectin provide a novel therapeutic approach to circumvent diminished fibronectin fibril formation by delivering ECM fibronectin signals in a soluble form to chronic wounds. Conclusion: A small, chimeric fibronectin protein was developed. FNIII1H(RGD) demonstrated enhanced bioactivity in vitro and stimulated wound repair in a murine model of chronic wounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app