Add like
Add dislike
Add to saved papers

Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module.

Cell Systems 2017 January 26
Bone mineral density (BMD) is a highly heritable predictor of osteoporotic fracture. Genome-wide association studies (GWAS) for BMD have identified dozens of associations; yet, the genes responsible for most associations remain elusive. Here, we used a bone co-expression network to predict causal genes at BMD GWAS loci based on the premise that genes underlying a disease are often functionally related and functionally related genes are often co-expressed. By mapping genes implicated by BMD GWAS onto a bone co-expression network, we predicted and inferred the function of causal genes for 30 of 64 GWAS loci. We experimentally confirmed that two of the genes predicted to be causal, SPTBN1 and MARK3, are potentially responsible for the effects of GWAS loci on chromosomes 2p16.2 and 14q32.32, respectively. This approach provides a roadmap for the dissection of additional BMD GWAS associations. Furthermore, it should be applicable to GWAS data for a wide range of diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app