Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Aperture extent and stimulus speed affect the perception of visual acceleration.

Humans are generally poor at detecting the presence of visual acceleration, but it is unclear whether the extent of a field of moving objects through an aperture affects this ability. Hypothetically, the farther a stimulus can accelerate uninterrupted by an aperture's physical constraints, the easier it should be to discern its motion profile. We varied the horizontal extent of the aperture through which continuously accelerating or decelerating random dot arrays were presented at different average speeds, and measured acceleration and deceleration detection thresholds. We also hypothesized that manipulating aperture extent at different speeds would change how observers visually pursue acceleration, which we tested in a control experiment. Results showed that, while there was no difference between the acceleration and deceleration conditions, detection was better in the larger than small aperture conditions. Regardless of aperture size, smaller acceleration and deceleration rates (relative to average speed) were needed to detect changing speed in faster than slower speed ranges. Similarly, observers tracked the stimuli to a greater extent in the larger than small apertures, and smooth pursuit was overall poorer at faster than slower speeds. Notably, the effect of speed on pursuit was greater for the larger than small aperture conditions, suggesting that the small aperture restricted pursuit. Furthermore, there was little difference in psychophysical and eye movement data between the medium and large aperture conditions within each speed range, indicating that it is easier to detect an accelerating profile when the aperture is large enough to encourage a minimum level of pursuit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app