Add like
Add dislike
Add to saved papers

Aquatic transformation of phosphite under natural sunlight and simulated irradiation.

Water Research 2017 Februrary 2
The phototransformation of phosphite (HPO3 2- , H2 PO3 - , +3) from Lake Taihu water (THW) under natural sunlight was evaluated. No direct phosphite photoreaction was observed under sunlight. Suspended solids were shown to play important roles in the indirect photoreaction of phosphite in lake water. The phototransformation of phosphite followed pseudo-first-order reaction kinetics and the kinetics constants (k, d-1 ) decreased as: 0.0324 (original THW), 0.0236 (sterilized THW), 0.0109 (filtered THW) and 0.0102 (sterilized filtered THW). Original THW with 1 mmol L-1 NO3 - added was used to simulate the phosphite removal in lakes with serious N pollution. The results showed that the phototransformation was accelerated (with k increased to 0.0386-0.0463 d-1 ), and sterilization or filtration shown little effect to the transformation, as the half-lives of phosphite drew closer. Under simulated irradiation in NO3 - system, increasing NO3 - concentration or decreasing pH value promoted phototransformation. The addition of Fe3+ or Fe2+ accelerated photooxidation, while the addition of Mn2+ or Cd2+ inhibited phototransformation. Br- , NO2 - and HCO3 - in environmental concentrations decreased phototransformation, and HCO3 - showed the strongest inhibition. Suwannee River humic acid or Suwannee River fulvic acid strongly inhibited the photooxidation process, and the inhibiting effects varied with their structure. Phosphite photooxidation was strongly inhibited by adding isopropanol or sodium azide as reactive oxygen species (ROS) quenchers. Electron spin resonance analysis indicated that OH was a main oxidant produced in this system. The increased amount of phosphate coincided with the decreased amount of phosphite, which indicated that the transformation product of phosphite was phosphate. Phosphite is a considerable component of the P redox cycle in Lake Taihu.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app