Add like
Add dislike
Add to saved papers

Enhanced volatile fatty acid production from excess sludge by combined free nitrous acid and rhamnolipid treatment.

VFA production from excess sludge (ES) was greatly enhanced by a low-cost and high-efficient treatment: 0.67mg/L free nitrous acid (FNA) pretreatment combined with 0.04g/g TSS rhamnolipid (RL) addition (FNA+RL), which significantly shortened fermentation time to 3days and increased VFA production to 352.26mgCOD/g VSS (5.42 times higher than raw ES). Propionic and acetic acids were the two leading components (71.86% of the total VFA). Mechanism investigation manifested FNA+RL improved the biodegradability of ES, achieved positive synergetic effect on solubilization, hydrolysis and acidification efficiencies, and inhibited methanation. Microbial community distribution further explained the above phenomena. The bacteria related to polysaccharides/protein utilization and VFA generation, including Clostridium, Megasphaera and Proteiniborus, were mainly observed in FNA+RL, whereas gas-forming bacteria Anaerolineae and acid-consuming bacteria Proteobacteria were assuredly suppressed. Besides, Propionibacterineae associated with propionic acid generation was exclusively enriched in sole RL and FNA+RL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app