Add like
Add dislike
Add to saved papers

High-level expression and efficient refolding of therapeutically important recombinant human Interleukin-3 (hIL-3) in E. coli.

Human interleukin-3 (hIL-3) is a pleiotropic cytokine that stimulates the differentiation and proliferation of multipotent hematopoietic cells thus making it a therapeutically important molecule. In this study, its poor expression yield was improved by addressing various upstream bottlenecks in E. coli heterologous system. The codon-optimized hIL-3 gene was cloned under various signal sequences and solubility enhancer fusion tags for its hyper-expression under a strong T7 promoter. The optimization of shake flask expression studies resulted in a hIL-3 protein concentration of 225 mg/L in the form of inclusion bodies (IBs). Lowering of inducer concentration and cultivation temperature did not improve its solubility. The hIL-3 protein was refolded from IBs and resulted a protein recovery yield of 53% after optimization of refolding conditions. The refolded protein was subsequently purified using Ni-NTA affinity chromatography and gave ∼95% pure protein. The conformational properties of the refolded hIL-3 protein were studied by CD and fluorescence spectrometry where protein showed 40% α-helix and 12% β-sheets with a fluorescence emission maxima at 344 nm. The molecular identity was further confirmed by MALDI-TOF/TOF and western blot analysis. The biological activity of refolded protein was confirmed via cell proliferation assay on human erythroleukemia TF-1 cells where commercial hIL-3 was taken as a standard control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app