JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Striatal H3K27 Acetylation Linked to Glutamatergic Gene Dysregulation in Human Heroin Abusers Holds Promise as Therapeutic Target.

BACKGROUND: Opiate abuse and overdose reached epidemic levels in the United States. However, despite significant advances in animal and in vitro models, little knowledge has been directly accrued regarding the neurobiology of the opiate-addicted human brain.

METHODS: We used postmortem human brain specimens from a homogeneous European Caucasian population of heroin users for transcriptional and epigenetic profiling, as well as direct assessment of chromatin accessibility in the striatum, a brain region central to reward and emotion. A rat heroin self-administration model was used to obtain translational molecular and behavioral insights.

RESULTS: Our transcriptome approach revealed marked impairments related to glutamatergic neurotransmission and chromatin remodeling in the human striatum. A series of biochemical experiments tracked the specific location of the epigenetic disturbances to hyperacetylation of lysine 27 of histone H3, showing dynamic correlations with heroin use history and acute opiate toxicology. Targeted investigation of GRIA1, a glutamatergic gene implicated in drug-seeking behavior, verified the increased enrichment of lysine-27 acetylated histone H3 at discrete loci, accompanied by enhanced chromatin accessibility at hyperacetylated regions in the gene body. Analogous epigenetic impairments were detected in the striatum of heroin self-administering rats. Using this translational model, we showed that bromodomain inhibitor JQ1, which blocks the functional readout of acetylated lysines, reduced heroin self-administration and cue-induced drug-seeking behavior.

CONCLUSIONS: Overall, our data suggest that heroin-related histone H3 hyperacetylation contributes to glutamatergic transcriptional changes that underlie addiction behavior and identify JQ1 as a promising candidate for targeted clinical interventions in heroin use disorder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app