Add like
Add dislike
Add to saved papers

Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs.

Despite the substantial body of research investigating the use of liposomes, niosomes and other bilayer vesicles for drug delivery, the translation of these systems into licensed products remains limited. Indeed, recent shortages in the supply of liposomal products demonstrate the need for new scalable production methods for liposomes. Therefore, the aim of our research has been to consider the application of microfluidics in the manufacture of liposomes containing either or both a water soluble and a lipid soluble drug to promote co-delivery of drugs. For the first time, we demonstrate the entrapment of a hydrophilic and a lipophilic drug (metformin and glipizide respectively) both individually, and in combination, using a scalable microfluidics manufacturing system. In terms of the operating parameters, the choice of solvents, lipid concentration and aqueous:solvent ratio all impact on liposome size with vesicle diameter ranging from ∼90 to 300nm. In terms of drug loading, microfluidics production promoted high loading within ∼100nm vesicles for both the water soluble drug (20-25% of initial amount added) and the bilayer embedded drug (40-42% of initial amount added) with co-loading of the drugs making no impact on entrapment efficacy. However, co-loading of glipizide and metformin within the same liposome formulation did impact on the drug release profiles; in both instances the presence of both drugs in the one formulation promoted faster (up to 2 fold) release compared to liposomes containing a single drug alone. Overall, these results demonstrate the application of microfluidics to prepare liposomal systems incorporating either or both an aqueous soluble drug and a bilayer loaded drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app