Add like
Add dislike
Add to saved papers

Lead accumulation and metallothionein content in female rats of different ages and generations after daily intake of Pb-contaminated food.

Female Wistar rats of different ages (45, 90 and 140 days) and generations (mothers and offspring) were fed a feed containing 2.0mg of Pb kg(-1) daily from weaning and the Pb accumulation was determined in different organs and in maternal milk, in addition metallothioneins (MTs) content was determined in the liver and kidneys. The results showed that Pb accumulation exhibited the following pattern: bone>liver>kidney>gut>blood cells>muscle>brain>ovary. Bones accumulated the most Pb in all animals, with its concentration increasing with age and prenatal exposure. Pb accumulation in the liver, kidney and blood cells, did not follow a consistent pattern with increasing age and our data did not indicate a relationship between the presence of MTs in liver and kidney and metal accumulation in these organs. However, in the offspring and with increasing age, Pb accumulated in more organs. Mothers fed with Pb produced contaminated milk, exposing their offspring to the metal via nursing Thus, increasing age and prenatal exposure increases susceptibility to Pb toxicity-induced damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app