Add like
Add dislike
Add to saved papers

Identification and structure-activity relationship of purine derivatives as novel MTH1 inhibitors.

The human mutT homolog-1 (MTH1) protein prevents the incorporation of oxidized nucleotides such as 2-OH-dATP and 8-oxo-dGTP during DNA replication by hydrolyzing them into their corresponding monophosphates. It was found previously that cancer cells could tolerate oxidative stress due to this enzymatic activity of MTH1 and its inhibition could be a promising approach to treat several types of cancer. This finding has been challenged recently with increasing line of evidence suggesting that the cancer cell-killing effects of MTH1 inhibitors may be related to their engagement of off-targets. We have previously reported a few purine-based MTH1 inhibitors that enabled us to elucidate the dispensability of MTH1 in cancer cell survival. Here, we provide a detailed process of the identification of purine-based MTH1 inhibitors. Several new compounds with potency in the submicromolar range are disclosed. Furthermore, the structure-activity relationship and associated binding mode prediction using molecular docking have provided insights for the development of highly potent MTH1 inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app