JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Region-specific effects of oestradiol on adipose-derived stem cell differentiation in post-menopausal women.

The goal of this study was to determine the effect of acute transdermal 17β-oestradiol (E2 ) on the adipogenic potential of subcutaneous adipose-derived stem cells (ASC) in post-menopausal women. Post-menopausal women (n = 11; mean age 57 ± 4.5 years) were treated for 2 weeks, in a randomized, cross-over design, with transdermal E2 (0.15 mg) or placebo patches. Biopsies of abdominal (AB) and femoral (FEM) subcutaneous adipose tissue (SAT) were obtained after each treatment and mature adipocytes were analysed for cell size and ASC for their capacity for proliferation (growth rate), differentiation (triglyceride accumulation) and susceptibility to tumour necrosis factor alpha-induced apoptosis. Gene expression of oestrogen receptors α and β (ESR1 and ESR2), perilipin 1 and hormone-sensitive lipase (HSL), was also assessed. In FEM SAT, but not AB SAT, 2 weeks of E2 significantly (P = 0.03) increased ASC differentiation and whole SAT HSL mRNA expression (P = 0.03) compared to placebo. These changes were not associated with mRNA expression of oestrogen receptors α and β, but HSL expression was significantly increased in FEM SAT with transdermal E2 treatment. Adipose-derived stem cells proliferation and apoptosis did not change in either SAT depot after E2 compared with placebo. Short-term E2 appeared to increase the adipogenic potential of FEM, but not AB, SAT in post-menopausal women with possible implications for metabolic disease. Future studies are needed to determine longer term impact of E2 on regional SAT accumulation in the context of positive energy imbalance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app