Journal Article
Review
Add like
Add dislike
Add to saved papers

Quinoidal/Aromatic Transformations in π-Conjugated Oligomers: Vibrational Raman studies on the Limits of Rupture for π-Bonds.

Angewandte Chemie 2016 November 12
The vibrational Raman spectra of several series of aromatic and quinoidal compounds have been analyzed considering the downshifts and upshifts of the frequencies of the relevant Raman bands as a function of the number of repeating units. Oligothiophenes, oligophenylene-vinylenes, and oligoperylenes (oligophenyls) derivatives are studied in a common context. These shifts are taken as spectroscopic fingerprints of the changes in π-conjugation. For a given family, aromatic and quinoidal oligomers have been studied together, and according to their Raman frequency shifts located in the two-well BLA-energy curve of their ground electronic state as a function of the bond-length-alternation pattern (BLA). The connection among BLA values, π-conjugation, and Raman frequencies is taken here as the basis of the study. These Raman shifts/BLA changes have been related to important electronic properties of these one-dimensional linear π-electron delocalized systems such as quinoidal (polyene) and aromatic characters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app