Add like
Add dislike
Add to saved papers

MicroRNA-503-5p inhibits stretch-induced osteogenic differentiation and bone formation.

Cyclical stretch-induced bone formation during orthodontic treatment is a complex biological process modulated by various factors including miRNAs and their targeted-gene network. However, the miRNA expression profile and their roles in osteogenic differentiation of bone mesenchymal stem cells (BMSCs) exposed to mechanical stretch remains unclear. Here, we use the miRNA microarray assay to screen for mechano-sensitive miRNAs during stretch-induced osteogenic differentiation of BMSCs and identified that nine miRNAs were differentially expressed between stretched and control BMSCs. Furthermore, miR-503-5p, which was markedly downregulated in both microarray assay and qRT-PCR assay were selected for further functional verification. We found that overexpression of miR-503-5p in BMSCs attenuated stretch-induced osteogenic differentiation while the effect was reversed by miR-503-5p inhibition treatment. In vivo studies, overexpression of miR-503-5p with specific agomir decreased Runx2, ALP mRNA, and protein expression, decreased osteoblast numbers and osteoblastic bone formation in the OTM tension sides. In conclusion, our study revealed that miR-503-5p functions as the mechano-sensitive miRNA and inhibits BMSCs osteogenic differentiation subjected to mechanical stretch and bone formation in OTM tension sides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app