Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sildenafil therapy for fetal cardiovascular dysfunction during hypoxic development: studies in the chick embryo.

KEY POINTS: Common complications of pregnancy, such as chronic fetal hypoxia, trigger a fetal origin of cardiovascular dysfunction and programme cardiovascular disease in later life. Sildenafil treatment protects placental perfusion and fetal growth, but whether the effects of sildenafil transcend the placenta to affect the fetus is unknown. Using the chick embryo model, here we show that sildenafil treatment directly protects the fetal cardiovascular system in hypoxic development, and that the mechanisms of sildenafil protection include reduced oxidative stress and increased nitric oxide bioavailability; Sildenafil does not protect against fetal growth restriction in the chick embryo, supporting the idea that the protective effect of sildenafil on fetal growth reported in mammalian studies, including humans, is secondary to improved placental perfusion. Therefore, sildenafil may be a good candidate for human translational antioxidant therapy to protect the chronically hypoxic fetus in adverse pregnancy.

ABSTRACT: There is a need for developing clinically translatable therapy for preventing fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia. Evidence shows that sildenafil protects placental perfusion and fetal growth. However, whether beneficial effects of sildenafil transcend onto the fetal heart and circulation in complicated development is unknown. We isolated the direct effects of sildenafil on the fetus using the chick embryo and hypothesised that sildenafil also protects fetal cardiovascular function in hypoxic development. Chick embryos (n = 11 per group) were incubated in normoxia or hypoxia (14% O2 ) from day 1 and treated with sildenafil (4 mg kg-1  day-1 ) from day 13 of the 21-day incubation. Hypoxic incubation increased oxidative stress (4-hydroxynonenal, 141.1 ± 17.6% of normoxic control), reduced superoxide dismutase (60.7 ± 6.3%), increased phosphodiesterase type 5 expression (167 ± 13.7%) and decreased nitric oxide bioavailability (54.7 ± 6.1%) in the fetal heart, and promoted peripheral endothelial dysfunction (70.9 ± 5.6% AUC of normoxic control; all P < 0.05). Sildenafil treatment after onset of chronic hypoxia prevented the increase in phosphodiesterase expression (72.5 ± 22.4%), protected against oxidative stress (94.7 ± 6.2%) and normalised nitric oxide bioavailability (115.6 ± 22.3%) in the fetal heart, and restored endothelial function in the peripheral circulation (89.8 ± 2.9%). Sildenafil protects the fetal heart and circulation directly in hypoxic development via mechanisms including decreased oxidative stress and enhanced nitric oxide bioavailability. Sildenafil may be a good translational candidate for human antioxidant therapy to prevent fetal origins of cardiovascular dysfunction in adverse pregnancy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app