Add like
Add dislike
Add to saved papers

High Smad7 sustains inflammatory cytokine response in refractory coeliac disease.

Immunology 2017 March
Refractory coeliac disease (RCD) is a form of coeliac disease (CD) resistant to gluten-free diet and associated with elevated risk of complications. Many effector cytokines over-produced in the gut of patients with RCD are supposed to amplify the tissue-destructive immune response, but it remains unclear if the RCD-associated mucosal inflammation is sustained by defects in counter-regulatory mechanisms. The aim of the present study was to determine whether RCD-related inflammation is marked by high Smad7, an intracellular inhibitor of transforming growth factor-β1 (TGF-β1 ) activity. Smad7 was evaluated in duodenal biopsy samples of patients with RCD, patients with active CD, patients with inactive CD and healthy controls by Western blotting, immunohistochemistry and real-time PCR. In the same samples, TGF-β1 and phosphorylated (p)-Smad2/3 were evaluated by ELISA and immunohistochemistry, respectively. Pro-inflammatory cytokine expression was evaluated in RCD samples cultured with Smad7 sense or antisense oligonucleotide. Smad7 protein, but not RNA, expression was increased in RCD compared with active and inactive CD patients and healthy controls and this was associated with defective TGF-β1 signalling, as marked by diminished p-Smad2/3 expression. TGF-β1 protein content did not differ among groups. Knockdown of Smad7 in RCD biopsy samples reduced interleukin-6 and tumour necrosis factor-α expression. In conclusion, in RCD, high Smad7 associates with defective TGF-β1 signalling and sustains inflammatory cytokine production. These results indicate a novel mechanism by which the mucosal cytokine response is amplified in RCD and suggest that targeting Smad7 can be therapeutically useful in RCD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app