JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Consequences of genetic linkage for the maintenance of sexually antagonistic polymorphism in hermaphrodites.

When selection differs between males and females, pleiotropic effects among genes expressed by both sexes can result in sexually antagonistic selection (SA), where beneficial alleles for one sex are deleterious for the other. For hermaphrodites, alleles with opposing fitness effects through each sex function represent analogous genetic constraints on fitness. Recent theory based on single-locus models predicts that the maintenance of SA genetic variation should be greatly reduced in partially selfing populations. However, selfing also reduces the effective rate of recombination, which should facilitate selection on linked allelic combinations and expand opportunities for balancing selection in a multilocus context. Here, I develop a two-locus model of SA selection for simultaneous hermaphrodites, and explore the joint influence of linkage, self-fertilization, and dominance on the maintainance of SA polymorphism. I find that the effective reduction in recombination caused by selfing significantly expands the parameter space where SA polymorphism can be maintained relative to single-locus models. In particular, linkage facilitates the invasion of male-beneficial alleles, partially compensating for the "female-bias" in the net direction of selection created by selfing. I discuss the implications of accounting for linkage among SA loci for the maintenance of SA genetic variation and mixed mating systems in hermaphrodites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app