Add like
Add dislike
Add to saved papers

The Ability of a Non-Egg Adapted (Cell-Like) A(H1N1)pdm09 Virus to Egg-Adapt at HA Loci Other than 222 and 223 and Its Effect on the Yield of Viral Protein.

Previous studies on influenza A(H1N1)pdm09 candidate vaccine viruses (CVVs) that had adapted to growth in embryonated chicken eggs by the acquisition of amino acid substitutions at HA positions 222 or 223 showed that improved protein yield could be conferred by additional amino acid substitutions in the haemagglutinin (HA) that arose naturally during passaging of the virus in eggs. In this study we investigated, by means of reverse genetics, the ability of a non-egg adapted (cell-like) A(H1N1)pdm09 virus to egg-adapt at HA loci other than 222/223, introducing amino acid substitutions previously identified as egg adaptations in pre-H1N1pdm09 H1N1 viruses and assessing their effect on protein yield and antigenicity. We also investigated the effect on the protein yield of these substitutions in viruses that had A(H1N1)pdm09 internal genes rather than the traditional PR8 internal genes of a CVV. The data show that a cell-like A/Christchurch/16/2010 can be egg-adapted via amino acid substitutions in at least three alternative HA loci (187, 190 and 216), in viruses with either PR8 or A/California/7/2009 internal genes, but that the effects on protein yield vary depending on the amino acid substitution and the internal genes of the virus. Since CVVs need to produce high protein yields to be suitable for vaccine manufacture, the findings of this study will assist in the future characterisation of both wild type viruses and lab-derived CVVs for vaccine use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app