Add like
Add dislike
Add to saved papers

Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.

Three-dimensional (3D) nanometal scaffolds have gained considerable attention recently because of their promising application in high-performance supercapacitors compared with plain metal foils. Here, a highly oriented nickel (Ni) nanowire array (NNA) film was prepared via a simple magnetic-field-driven aqueous solution deposition process and then used as the electrode scaffold for the vapor-phase polymerization of 3,4-ethylenedioxythiophene (EDOT). Benefiting from the unique 3D open porous structure of the NNA that provided a highly conductive and oriented backbone for facile electron transfer and fast ion diffusion, the as-obtained poly(3,4-ethylenedioxythiophene) (PEDOT) exhibited an ultra-long cycle life (95.7% retention of specific capacitance after 20 000 charge/discharge cycles at 5 A/g) and superior capacitive performance. Furthermore, two electrodes were fabricated into an aqueous symmetric supercapacitor, which delivered a high energy density (30.38 Wh/kg at 529.49 W/kg) and superior long-term cycle ability (13.8% loss of capacity after 20 000 cycles). Based on these results, the vapor-phase polymerization of EDOT on metal nanowire array current collectors has great potential for use in supercapacitors with enhanced performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app