Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Insight into the Interfacial Process and Mechanism in Lithium-Sulfur Batteries: An In Situ AFM Study.

Angewandte Chemie 2016 December 20
Lithium-sulfur (Li-S) batteries are highly appealing for large-scale energy storage. However, performance deterioration issues remain, which are highly related to interfacial properties. Herein, we present a direct visualization of the interfacial structure and dynamics of the Li-S discharge/charge processes at the nanoscale. In situ atomic force microscopy and ex situ spectroscopic methods directly distinguish the morphology and growth processes of insoluble products Li2 S2 and Li2 S. The monitored interfacial dynamics show that Li2 S2 nanoparticle nuclei begin to grow at 2 V followed by a fast deposition of lamellar Li2 S at 1.83 V on discharge. Upon charging, only Li2 S depletes from the interface, leaving some Li2 S2 undissolved, which accumulates during cycling. The galvanostatic precipitation of Li2 S2 and/or Li2 S is correlated to current rates and affects the specific capacity. These findings reveal a straightforward structure-reactivity correlation and performance fading mechanism in Li-S batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app