JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Microsecond Timescale Dynamics of GDP-Bound Ras Underlies the Formation of Novel Inhibitor-Binding Pockets.

Angewandte Chemie 2016 December 13
The recent discovery of inhibitory compounds binding to distinct pockets on GDP-bound Ras has renewed the view on the druggability of this crucial cancer driver. However, the origin of these pockets, which are not readily formed in the crystal structure in the absence of the compounds, is yet unclear. Herein, we explored the intrinsic flexibility of Ras⋅GDP on microsecond to millisecond timescales using relaxation-based NMR experiments, and identified substantial slow dynamics with τex of 34 μs at 5 °C, which maps to the regions showing a high level of correlation with those displaying conformational differences between the inhibitor-bound and free states. These findings, which have been demonstrated in both wild-type Ras and the oncogenic mutant (G12V), support the mechanism of extended conformational selection for Ras-inhibitor interactions where the small molecules redistribute the protein conformational ensemble favoring the final bound states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app