Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Phosphorylation of Serine 148 in Giardia lamblia End-binding 1 Protein is Important for Cell Division.

Giardia lamblia is a unicellular organism, showing a polarity with two nuclei and cytoskeletal structures. Accurate positioning of these organelles is essential for division of G. lamblia, which is poorly understood. Giardia lamblia end-binding 1 (GlEB1) protein and G. lamblia aurora kinase (GlAK) have been shown to modulate microtubule (MT) distribution during cytokinesis. A direct association between GlEB1 and GlAK was demonstrated. Like GlEB1, GlAK was also found at nuclear envelopes and median bodies of G. lamblia. In vitro kinase assays using Giardia lysates immunoprecipitated with anti-GlAK antibodies or recombinant GlAK suggested that GlEB1 is a substrate of GlAK. Site-directed mutagenesis indicated that threonine-205 in GlAK was auto-phosphorylated and that GlAK phosphorylated serine (Ser)-148 in GlEB1. Ectopic expression of a mutant GlEB1 (with conversion of Ser-148 into alanine of GlEB1) resulted in an increased number of Giardia cells with division defects. Treatment of G. lamblia with an AK inhibitor triggered cytokinesis defects, and ectopic expression of a phospho-mimetic mutant GlEB1 (with conversion of Ser-148 into aspartate) rescued the defects in Giardia cell division caused by the AK inhibitor. These results suggested that phosphorylation of GlEB1 played a role in cytokinesis in G. lamblia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app