Add like
Add dislike
Add to saved papers

Antheraea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation.

Bone biomineralization is well-regulated processes mediated by extracellular matrix proteins. The materials that can direct nucleation of hydroxylapatite (HAp) crystals and assembly of well-structured material-minerals complex are the key to mimicking the natural mineralization. This study used sericin from Antheraea pernyi (A.pernyi), non-mulberry silkworm cocoon as template to mediate nucleation of HAp crystals. Here we find out that AS (Antheraea pernyi sericin) can nucleate the formation HAp crystals in simulated body fluid verified by XRD and FTIR observations. The HAp crystals are organized into nano-rods oriented with c-axis preferentially parallel to the long axis of AS due to hydrogen bonds and electrostatic interaction and finally aggregated into HAp globule. The cell culture of human bone marrow-derived mesenchymal stem cells (BMSCs) showed that the HAp crystals mediated by AS not only stimulate cell adhesion and proliferation but also promote 0f osteogenic differentiation, suggesting that the resultant mineralized AS biomaterial has potential in promoting bone formation. Thus our work will provide significant implication on biomineralization of A. pernyi silk sericin as a potential scaffold for tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app