Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Molecularly imprinted core-shell magnetic nanoparticles for selective extraction of triazines in soils.

In this work, a propazine-imprinted polymer was synthesized on the surface of modified magnetic nanoparticles to be used in the solid-phase extraction of triazines in soil samples. The effect of different solvents on the selective extraction of target analytes was assessed to establish the optimum rebinding conditions. The obtained magnetic molecularly imprinted particles exhibited high selectivity for triazines and were easily collected and separated by an external magnetic field without additional centrifugation or filtration steps. Under optimum conditions, a magnetic molecularly imprinted solid-phase extraction method was developed allowing the extraction of several triazines (desisopropylatrazine, desethylatrazine, simazine, atrazine, and propazine) from soil samples and their subsequent final determination by high-performance liquid chromatography with diode-array detection. Recoveries for the triazines studied were within the range 5.4% to 40.6%, with relative standard deviations lower than 7.0% (n = 3). The detection limits were within 0.1 to 3 ng g-1 , depending upon the triazine and the type of soil used.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app