Add like
Add dislike
Add to saved papers

Biochemical and molecular characterization of a lipase from an Algerian isolated Staphylococcus aureus strain.

A Staphylococcus aureus strain, isolated from an Algerian biotope, secretes a non-induced lipase in the culture medium. The S. aureus lipase (SAL) was purified to homogeneity. Pure SAL is a monomeric protein (43 kDa). The 20 N-terminal amino acid residues showed a high degree of homology with other staphylococcal lipase sequences. SAL presents specific activities of about 1600 and 555 U mg(-1) using tributyrin and olive oil emulsion as substrates, respectively. In contrast to other staphylococcal lipases previously characterized, SAL was stable at a pH range from 6 to 9 after 1 h incubation, and retained 50% of its activity after 10 min incubation at 50 °C. The purified enzyme was also characterized using monolayer technique. Lipase activity can be measured only when the surface pressure exceeds 15 mN m(-1) . The critical surface pressure (πc ) measured with egg-PC films was estimated at 33 mN m(-1) . SAL showed a preference for the distal ester groups of the diglyceride isomers at low surface pressure, for the adjacent ester groups at high surface pressure and a preference for the sn-3 position of the 2,3-sn-enantiomer of dicaprin. Cloned and sequenced gene part, encoding the mature lipase shows, in comparison with S. aureus lipase 3 (SAL3), a deletion of three residues (LKA) at the N-terminal extremity and a substitution of glycine 208 and isoleucine 226 with an arginine and leucine, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app